Step
*
1
1
1
2
1
1
1
1
of Lemma
general-fan-theorem-troelstra2
1. X : n:â âś (ân âś đš) âś â@i'
2. F : âf:â âś đš. ân:â. (X n f)@i
3. M : n:â âś (ân âś đš) âś (â?)
4. G : âf:â âś đš. ân:â. (((M n f) = (inl (fst((F f)))) â (â?)) ⧠(âm:â. ((âisl(M m f))
â (m = n â â))))
5. k : â
6. âf:â âś đš. ân:âk. (â(âx<n + 1.isl(M x f) â§b if (outl(M x f)) < (n + 1) then tt else ff)_b)
7. f : â âś đš@i
8. n : âk
9. x : ân + 1
10. âisl(M x f)
11. âif (outl(M x f)) < (n + 1) then tt else ff
12. (M x f) = (inl (fst((F f)))) â (â?)
13. âm:â. ((âisl(M m f))
â (m = x â â))
⢠ân:âk. (X n f)
BY
{ (MoveToConcl (-2) THEN (GenConclTerm âF fââ
THENA Auto) THEN (ExRepD THENA Auto) THEN AllReduce) }
1
1. X : n:â âś (ân âś đš) âś â@i'
2. F : âf:â âś đš. ân:â. (X n f)@i
3. M : n:â âś (ân âś đš) âś (â?)
4. G : âf:â âś đš. ân:â. (((M n f) = (inl (fst((F f)))) â (â?)) ⧠(âm:â. ((âisl(M m f))
â (m = n â â))))
5. k : â
6. âf:â âś đš. ân:âk. (â(âx<n + 1.isl(M x f) â§b if (outl(M x f)) < (n + 1) then tt else ff)_b)
7. f : â âś đš@i
8. n : âk
9. x : ân + 1
10. âisl(M x f)
11. âif (outl(M x f)) < (n + 1) then tt else ff
12. âm:â. ((âisl(M m f))
â (m = x â â))
13. n1 : â@i
14. v1 : X n1 f@i
15. (F f) = <n1, v1> â (ân:â. (X n f))
16. (M x f) = (inl n1) â (â?)
⢠ân:âk. (X n f)
Latex:
Latex:
1. X : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbP{}@i'
2. F : \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbB{}. \mexists{}n:\mBbbN{}. (X n f)@i
3. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} (\mBbbN{}?)
4. G : \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbB{}. \mexists{}n:\mBbbN{}. (((M n f) = (inl (fst((F f))))) \mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} (m = n))))
5. k : \mBbbN{}
6. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbB{}. \mexists{}n:\mBbbN{}k. (\muparrow{}(\mexists{}x<n + 1.isl(M x f) \mwedge{}\msubb{} if (outl(M x f)) < (n + 1) then tt else ff)\_b)
7. f : \mBbbN{} {}\mrightarrow{} \mBbbB{}@i
8. n : \mBbbN{}k
9. x : \mBbbN{}n + 1
10. \muparrow{}isl(M x f)
11. \muparrow{}if (outl(M x f)) < (n + 1) then tt else ff
12. (M x f) = (inl (fst((F f))))
13. \mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} (m = x))
\mvdash{} \mexists{}n:\mBbbN{}k. (X n f)
By
Latex:
(MoveToConcl (-2) THEN (GenConclTerm \mkleeneopen{}F f\mkleeneclose{}\mcdot{} THENA Auto) THEN (ExRepD THENA Auto) THEN AllReduce)
Home
Index