Nuprl Lemma : not-d-CCC-infinite
∀[A:Type]. ((∃f:A ⟶ ℕ. Surj(A;ℕ;f))
⇒ (¬dCCC(A)))
Proof
Definitions occuring in Statement :
contra-dcc: dCCC(T)
,
surject: Surj(A;B;f)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
exists: ∃x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
exists: ∃x:A. B[x]
,
prop: ℙ
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
istype-universe,
surject_wf,
istype-nat,
contra-dcc_wf,
not-d-CCC-nat,
nat_wf,
d-CCC-surjection
Rules used in proof :
universeEquality,
instantiate,
Error :inhabitedIsType,
Error :functionIsTypeImplies,
dependent_functionElimination,
Error :lambdaEquality_alt,
Error :functionIsType,
Error :productIsType,
sqequalRule,
Error :universeIsType,
because_Cache,
voidElimination,
independent_functionElimination,
hypothesis,
hypothesisEquality,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
thin,
Error :lambdaFormation_alt,
cut,
introduction,
Error :isect_memberFormation_alt,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[A:Type]. ((\mexists{}f:A {}\mrightarrow{} \mBbbN{}. Surj(A;\mBbbN{};f)) {}\mRightarrow{} (\mneg{}dCCC(A)))
Date html generated:
2019_06_20-PM-03_00_54
Last ObjectModification:
2019_06_12-PM-08_58_50
Theory : continuity
Home
Index