Nuprl Lemma : not-d-CCC-nat

¬dCCC(ℕ)


Proof




Definitions occuring in Statement :  contra-dcc: dCCC(T) nat: not: ¬A
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q guard: {T} bfalse: ff true: True btrue: tt ifthenelse: if then else fi  assert: b isl: isl(x) so_apply: x[s] so_lambda: λ2x.t[x] less_than': less_than'(a;b) subtype_rel: A ⊆B top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a or: P ∨ Q decidable: Dec(P) ge: i ≥  squash: T less_than: a < b le: A ≤ B and: P ∧ Q lelt: i ≤ j < k int_seg: {i..j-} nat: exists: x:A. B[x] all: x:A. B[x] prop: uall: [x:A]. B[x] member: t ∈ T contra-dcc: dCCC(T) implies:  Q not: ¬A
Lemmas referenced :  not-LPO iff_weakening_equal istype-universe true_wf squash_wf equal_wf int_term_value_add_lemma itermAdd_wf istype-true istype-less_than int_formula_prop_eq_lemma int_formula_prop_less_lemma intformeq_wf intformless_wf istype-assert bfalse_wf btrue_wf decidable_wf subtype_rel_self decidable__equal_int decidable__all_int_seg decidable__lt decidable__exists_int_seg int_subtype_base le_wf set_subtype_base istype-false int_seg_subtype_nat equal-wf-base istype-nat istype-le int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf full-omega-unsat decidable__le nat_properties int_seg_properties less_than_wf int_seg_wf decidable__or nat_wf contra-dcc_wf
Rules used in proof :  imageMemberEquality universeEquality addEquality Error :unionIsType,  Error :productIsType,  applyLambdaEquality Error :inrFormation_alt,  sqequalBase Error :functionIsType,  Error :inlFormation_alt,  equalitySymmetry equalityTransitivity Error :equalityIstype,  Error :inhabitedIsType,  unionEquality functionExtensionality because_Cache instantiate baseClosed intEquality functionEquality independent_pairFormation voidElimination Error :isect_memberEquality_alt,  int_eqEquality Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  independent_functionElimination approximateComputation independent_isectElimination unionElimination dependent_functionElimination imageElimination Error :dependent_set_memberEquality_alt,  applyEquality productElimination hypothesisEquality rename setElimination natural_numberEquality productEquality sqequalRule hypothesis thin isectElimination extract_by_obid introduction cut Error :universeIsType,  sqequalHypSubstitution Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mneg{}dCCC(\mBbbN{})



Date html generated: 2019_06_20-PM-03_00_31
Last ObjectModification: 2019_06_12-PM-08_24_12

Theory : continuity


Home Index