Step
*
1
1
1
1
of Lemma
strong-continuity-implies2
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
3. f : ℕ ⟶ ℕ
4. n : ℕ
5. (M n f) = (inl (F f)) ∈ (ℕ?)
6. ∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)
⊢ ∃n:ℕ
   ((strong-continuity-test(M;n;f;M n f) = (inl (F f)) ∈ (ℕ?))
   ∧ (∀m:ℕ. ((↑isl(strong-continuity-test(M;m;f;M m f))) 
⇒ (m = n ∈ ℕ))))
BY
{ (Decide ⌜↑isl(strong-continuity-test(M;n;f;M n f))⌝⋅ THENA Auto) }
1
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
3. f : ℕ ⟶ ℕ
4. n : ℕ
5. (M n f) = (inl (F f)) ∈ (ℕ?)
6. ∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)
7. ↑isl(strong-continuity-test(M;n;f;M n f))
⊢ ∃n:ℕ
   ((strong-continuity-test(M;n;f;M n f) = (inl (F f)) ∈ (ℕ?))
   ∧ (∀m:ℕ. ((↑isl(strong-continuity-test(M;m;f;M m f))) 
⇒ (m = n ∈ ℕ))))
2
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕ?)
3. f : ℕ ⟶ ℕ
4. n : ℕ
5. (M n f) = (inl (F f)) ∈ (ℕ?)
6. ∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)
7. ¬↑isl(strong-continuity-test(M;n;f;M n f))
⊢ ∃n:ℕ
   ((strong-continuity-test(M;n;f;M n f) = (inl (F f)) ∈ (ℕ?))
   ∧ (∀m:ℕ. ((↑isl(strong-continuity-test(M;m;f;M m f))) 
⇒ (m = n ∈ ℕ))))
Latex:
Latex:
1.  F  :  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}
2.  M  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}?)
3.  f  :  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}
4.  n  :  \mBbbN{}
5.  (M  n  f)  =  (inl  (F  f))
6.  \mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f)
\mvdash{}  \mexists{}n:\mBbbN{}
      ((strong-continuity-test(M;n;f;M  n  f)  =  (inl  (F  f)))
      \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(strong-continuity-test(M;m;f;M  m  f)))  {}\mRightarrow{}  (m  =  n))))
By
Latex:
(Decide  \mkleeneopen{}\muparrow{}isl(strong-continuity-test(M;n;f;M  n  f))\mkleeneclose{}\mcdot{}  THENA  Auto)
Home
Index