Step
*
1
of Lemma
strong-continuity-implies4
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
3. ∀f:ℕ ⟶ ℕ. (↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?))))))
4. f : ℕ ⟶ ℕ
5. ↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?)))))
⊢ (∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?))))
BY
{ TACTIC:D 0 }
1
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
3. ∀f:ℕ ⟶ ℕ. (↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?))))))
4. f : ℕ ⟶ ℕ
5. ↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?)))))
⊢ ∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))
2
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
3. ∀f:ℕ ⟶ ℕ. (↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?))))))
4. f : ℕ ⟶ ℕ
5. ↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?)))))
⊢ ∀m:ℕ. ((↑isl(M m f)) 
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?)))
Latex:
Latex:
1.  F  :  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}
2.  M  :  n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
3.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
          (\mdownarrow{}\mexists{}n:\mBbbN{}.  (((M  n  f)  =  (inl  (F  f)))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  (F  f)))))))
4.  f  :  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}
5.  \mdownarrow{}\mexists{}n:\mBbbN{}.  (((M  n  f)  =  (inl  (F  f)))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  (F  f))))))
\mvdash{}  (\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  (F  f)))))
By
Latex:
TACTIC:D  0
Home
Index