Nuprl Lemma : strong-continuity-implies4
∀[F:(ℕ ⟶ ℕ) ⟶ ℕ]
  (↓∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
     ∀f:ℕ ⟶ ℕ. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀m:ℕ. ((↑isl(M m f)) ⇒ ((M m f) = (inl (F f)) ∈ (ℕ?))))))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
nat: ℕ, 
assert: ↑b, 
isl: isl(x), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
squash: ↓T, 
implies: P ⇒ Q, 
and: P ∧ Q, 
unit: Unit, 
apply: f a, 
function: x:A ⟶ B[x], 
inl: inl x, 
union: left + right, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
squash: ↓T, 
exists: ∃x:A. B[x], 
all: ∀x:A. B[x], 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
uimplies: b supposing a, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
int_seg: {i..j-}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
isl: isl(x), 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
sq_stable: SqStable(P)
Lemmas referenced : 
strong-continuity-implies3, 
istype-nat, 
unit_wf2, 
subtype_rel_function, 
nat_wf, 
int_seg_wf, 
int_seg_subtype_nat, 
istype-false, 
subtype_rel_self, 
union_subtype_base, 
set_subtype_base, 
lelt_wf, 
istype-int, 
int_subtype_base, 
unit_subtype_base, 
istype-assert, 
btrue_wf, 
bfalse_wf, 
isl_wf, 
mu-property, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
mu_wf, 
equal_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
sq_stable__all, 
assert_wf, 
equal-wf-base-T, 
sq_stable__equal, 
subtype_rel_union, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
productElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaFormation_alt, 
hypothesis, 
dependent_functionElimination, 
Error :functionIsType, 
because_Cache, 
sqequalRule, 
Error :productIsType, 
Error :equalityIstype, 
Error :unionIsType, 
Error :universeIsType, 
applyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
independent_pairFormation, 
intEquality, 
Error :lambdaEquality_alt, 
closedConclusion, 
Error :inlEquality_alt, 
sqequalBase, 
equalitySymmetry, 
Error :inhabitedIsType, 
unionElimination, 
equalityTransitivity, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
instantiate, 
cumulativity, 
Error :dependent_pairEquality_alt, 
axiomEquality, 
unionEquality, 
functionEquality, 
Error :functionIsTypeImplies, 
universeEquality
Latex:
\mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}]
    (\mdownarrow{}\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
              ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  (F  f)))))))
Date html generated:
2019_06_20-PM-02_51_39
Last ObjectModification:
2018_11_23-PM-05_21_40
Theory : continuity
Home
Index