Nuprl Lemma : strong-continuity-implies4

[F:(ℕ ⟶ ℕ) ⟶ ℕ]
  (↓∃M:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
     ∀f:ℕ ⟶ ℕ((∃n:ℕ((M f) (inl (F f)) ∈ (ℕ?))) ∧ (∀m:ℕ((↑isl(M f))  ((M f) (inl (F f)) ∈ (ℕ?))))))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: assert: b isl: isl(x) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T exists: x:A. B[x] all: x:A. B[x] and: P ∧ Q subtype_rel: A ⊆B nat: uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] isl: isl(x) sq_type: SQType(T) guard: {T} assert: b ifthenelse: if then else fi  btrue: tt true: True prop: iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P)
Lemmas referenced :  strong-continuity-implies3 istype-nat unit_wf2 subtype_rel_function nat_wf int_seg_wf int_seg_subtype_nat istype-false subtype_rel_self union_subtype_base set_subtype_base lelt_wf istype-int int_subtype_base unit_subtype_base istype-assert btrue_wf bfalse_wf isl_wf mu-property subtype_base_sq bool_wf bool_subtype_base mu_wf equal_wf squash_wf true_wf iff_weakening_equal sq_stable__all assert_wf equal-wf-base-T sq_stable__equal subtype_rel_union istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality imageElimination productElimination Error :dependent_pairFormation_alt,  Error :lambdaFormation_alt,  hypothesis dependent_functionElimination Error :functionIsType,  because_Cache sqequalRule Error :productIsType,  Error :equalityIstype,  Error :unionIsType,  Error :universeIsType,  applyEquality natural_numberEquality setElimination rename independent_isectElimination independent_pairFormation intEquality Error :lambdaEquality_alt,  closedConclusion Error :inlEquality_alt,  sqequalBase equalitySymmetry Error :inhabitedIsType,  unionElimination equalityTransitivity independent_functionElimination imageMemberEquality baseClosed applyLambdaEquality instantiate cumulativity Error :dependent_pairEquality_alt,  axiomEquality unionEquality functionEquality Error :functionIsTypeImplies,  universeEquality

Latex:
\mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}]
    (\mdownarrow{}\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  (\mBbbN{}n?)
          \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
              ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}m:\mBbbN{}.  ((\muparrow{}isl(M  m  f))  {}\mRightarrow{}  ((M  m  f)  =  (inl  (F  f)))))))



Date html generated: 2019_06_20-PM-02_51_39
Last ObjectModification: 2018_11_23-PM-05_21_40

Theory : continuity


Home Index