Step
*
1
2
of Lemma
strong-continuity-implies4
1. F : (ℕ ⟶ ℕ) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ (ℕn?)
3. ∀f:ℕ ⟶ ℕ. (↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?))))))
4. f : ℕ ⟶ ℕ
5. ↓∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?)))))
⊢ ∀m:ℕ. ((↑isl(M m f))
⇒ ((M m f) = (inl (F f)) ∈ (ℕ?)))
BY
{ TACTIC:(D -1 THEN Unhide THEN Auto THEN ExRepD THEN Auto) }
Latex:
Latex:
1. F : (\mBbbN{} {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} \mBbbN{}
2. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbN{}) {}\mrightarrow{} (\mBbbN{}n?)
3. \mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbN{}
(\mdownarrow{}\mexists{}n:\mBbbN{}. (((M n f) = (inl (F f))) \mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} ((M m f) = (inl (F f)))))))
4. f : \mBbbN{} {}\mrightarrow{} \mBbbN{}
5. \mdownarrow{}\mexists{}n:\mBbbN{}. (((M n f) = (inl (F f))) \mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} ((M m f) = (inl (F f))))))
\mvdash{} \mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} ((M m f) = (inl (F f))))
By
Latex:
TACTIC:(D -1 THEN Unhide THEN Auto THEN ExRepD THEN Auto)
Home
Index