Step * 1 1 of Lemma strong-continuity2-implies-uniform-continuity


1. (ℕ ⟶ 𝔹) ⟶ 𝔹
2. ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (𝔹?)
      ∀f:ℕ ⟶ 𝔹((∃n:ℕ((M f) (inl (F f)) ∈ (𝔹?))) ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (𝔹?) supposing ↑isl(M f))))
⊢ ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (𝔹?) [(∀f:ℕ ⟶ 𝔹
                                    ((∃n:ℕ((M f) (inl (F f)) ∈ (𝔹?)))
                                    ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (𝔹?) supposing ↑isl(M f))))])
BY
((UnHalfSquash THENA Auto) THEN (UnHalfSquashConcl THENA Auto)) }

1
1. (ℕ ⟶ 𝔹) ⟶ 𝔹
2. ∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (𝔹?)
    ∀f:ℕ ⟶ 𝔹((∃n:ℕ((M f) (inl (F f)) ∈ (𝔹?))) ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (𝔹?) supposing ↑isl(M f)))
⊢ ∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (𝔹?) [(∀f:ℕ ⟶ 𝔹
                                  ((∃n:ℕ((M f) (inl (F f)) ∈ (𝔹?)))
                                  ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (𝔹?) supposing ↑isl(M f))))]


Latex:


Latex:

1.  F  :  (\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbB{}
2.  \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mBbbB{}?)
            \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}
                ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))
\mvdash{}  \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mBbbB{}?)  [(\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}
                                                                        ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))
                                                                        \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))])


By


Latex:
((UnHalfSquash  THENA  Auto)  THEN  (UnHalfSquashConcl  THENA  Auto))




Home Index