Step * 1 1 1 of Lemma strong-continuity2-implies-weak-skolem-cantor-nat

.....assertion..... 
1. (ℕ ⟶ 𝔹) ⟶ ℕ
2. ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)
      ∀f:ℕ ⟶ 𝔹((∃n:ℕ((M f) (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (ℕ?) supposing ↑isl(M f))))
⊢ (∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)
    ∀f:ℕ ⟶ 𝔹((∃n:ℕ((M f) (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (ℕ?) supposing ↑isl(M f))))
 (∃M:(ℕ ⟶ 𝔹) ⟶ ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f g ∈ (ℕf ⟶ 𝔹))  ((F f) (F g) ∈ ℕ)))
BY
(Thin (-1) THEN (D THENA Auto) THEN ExRepD) }

1
1. (ℕ ⟶ 𝔹) ⟶ ℕ
2. n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)
3. ∀f:ℕ ⟶ 𝔹((∃n:ℕ((M f) (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ(M f) (inl (F f)) ∈ (ℕ?) supposing ↑isl(M f)))
⊢ ∃M:(ℕ ⟶ 𝔹) ⟶ ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f g ∈ (ℕf ⟶ 𝔹))  ((F f) (F g) ∈ ℕ))


Latex:


Latex:
.....assertion..... 
1.  F  :  (\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}
2.  \00D9(\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mBbbN{}?)
            \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}
                ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))
\mvdash{}  (\mexists{}M:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  (\mBbbN{}?)
        \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}
            ((\mexists{}n:\mBbbN{}.  ((M  n  f)  =  (inl  (F  f))))  \mwedge{}  (\mforall{}n:\mBbbN{}.  (M  n  f)  =  (inl  (F  f))  supposing  \muparrow{}isl(M  n  f))))
{}\mRightarrow{}  (\mexists{}M:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))


By


Latex:
(Thin  (-1)  THEN  (D  0  THENA  Auto)  THEN  ExRepD)




Home Index