Step
*
1
1
1
of Lemma
strong-continuity2-implies-weak-skolem-cantor-nat
.....assertion.....
1. F : (ℕ ⟶ 𝔹) ⟶ ℕ
2. ⇃(∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)
∀f:ℕ ⟶ 𝔹. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f))))
⊢ (∃M:n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)
∀f:ℕ ⟶ 𝔹. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f))))
⇒ (∃M:(ℕ ⟶ 𝔹) ⟶ ℕ. ∀f,g:ℕ ⟶ 𝔹. ((f = g ∈ (ℕM f ⟶ 𝔹))
⇒ ((F f) = (F g) ∈ ℕ)))
BY
{ (Thin (-1) THEN (D 0 THENA Auto) THEN ExRepD) }
1
1. F : (ℕ ⟶ 𝔹) ⟶ ℕ
2. M : n:ℕ ⟶ (ℕn ⟶ 𝔹) ⟶ (ℕ?)
3. ∀f:ℕ ⟶ 𝔹. ((∃n:ℕ. ((M n f) = (inl (F f)) ∈ (ℕ?))) ∧ (∀n:ℕ. (M n f) = (inl (F f)) ∈ (ℕ?) supposing ↑isl(M n f)))
⊢ ∃M:(ℕ ⟶ 𝔹) ⟶ ℕ. ∀f,g:ℕ ⟶ 𝔹. ((f = g ∈ (ℕM f ⟶ 𝔹))
⇒ ((F f) = (F g) ∈ ℕ))
Latex:
Latex:
.....assertion.....
1. F : (\mBbbN{} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbN{}
2. \00D9(\mexists{}M:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} (\mBbbN{}?)
\mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbB{}
((\mexists{}n:\mBbbN{}. ((M n f) = (inl (F f)))) \mwedge{} (\mforall{}n:\mBbbN{}. (M n f) = (inl (F f)) supposing \muparrow{}isl(M n f))))
\mvdash{} (\mexists{}M:n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} (\mBbbN{}?)
\mforall{}f:\mBbbN{} {}\mrightarrow{} \mBbbB{}
((\mexists{}n:\mBbbN{}. ((M n f) = (inl (F f)))) \mwedge{} (\mforall{}n:\mBbbN{}. (M n f) = (inl (F f)) supposing \muparrow{}isl(M n f))))
{}\mRightarrow{} (\mexists{}M:(\mBbbN{} {}\mrightarrow{} \mBbbB{}) {}\mrightarrow{} \mBbbN{}. \mforall{}f,g:\mBbbN{} {}\mrightarrow{} \mBbbB{}. ((f = g) {}\mRightarrow{} ((F f) = (F g))))
By
Latex:
(Thin (-1) THEN (D 0 THENA Auto) THEN ExRepD)
Home
Index