Step
*
1
1
2
of Lemma
strong-continuity3-implies-4
1. [T] : Type
2. F : (ℕ ⟶ T) ⟶ ℕ
3. M : n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)
4. ∀f:ℕ ⟶ T. ∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ))))
5. d : ∀n:ℕ. ∀s:ℕn ⟶ T. Dec(∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n))
⊢ ∀f:ℕ ⟶ T
∃n:ℕ
((((λn,s. case d n s of inl(t) => M (fst(t)) s | inr(x) => inr ⋅ ) n f) = (inl (F f)) ∈ (ℕ?))
∧ (∀m:ℕ
((↑isl((λn,s. case d n s of inl(t) => M (fst(t)) s | inr(x) => inr ⋅ ) m f))
⇒ (((λn,s. case d n s of inl(t) => M (fst(t)) s | inr(x) => inr ⋅ ) m f) = (inl (F f)) ∈ (ℕ?)))))
BY
{ (Reduce 0 THEN ParallelOp -2 THEN ExRepD) }
1
1. [T] : Type
2. F : (ℕ ⟶ T) ⟶ ℕ
3. M : n:ℕ ⟶ (ℕn ⟶ T) ⟶ (ℕ?)
4. ∀f:ℕ ⟶ T. ∃n:ℕ. (((M n f) = (inl (F f)) ∈ (ℕ?)) ∧ (∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ))))
5. d : ∀n:ℕ. ∀s:ℕn ⟶ T. Dec(∃i:ℕn. ((↑isl(M i s)) ∧ outl(M i s) < n))
6. f : ℕ ⟶ T
7. n : ℕ
8. (M n f) = (inl (F f)) ∈ (ℕ?)
9. ∀m:ℕ. ((↑isl(M m f))
⇒ (m = n ∈ ℕ))
⊢ ∃n:ℕ
((case d n f of inl(t) => M (fst(t)) f | inr(x) => inr ⋅ = (inl (F f)) ∈ (ℕ?))
∧ (∀m:ℕ
((↑isl(case d m f of inl(t) => M (fst(t)) f | inr(x) => inr ⋅ ))
⇒ (case d m f of inl(t) => M (fst(t)) f | inr(x) => inr ⋅ = (inl (F f)) ∈ (ℕ?)))))
Latex:
Latex:
1. [T] : Type
2. F : (\mBbbN{} {}\mrightarrow{} T) {}\mrightarrow{} \mBbbN{}
3. M : n:\mBbbN{} {}\mrightarrow{} (\mBbbN{}n {}\mrightarrow{} T) {}\mrightarrow{} (\mBbbN{}?)
4. \mforall{}f:\mBbbN{} {}\mrightarrow{} T. \mexists{}n:\mBbbN{}. (((M n f) = (inl (F f))) \mwedge{} (\mforall{}m:\mBbbN{}. ((\muparrow{}isl(M m f)) {}\mRightarrow{} (m = n))))
5. d : \mforall{}n:\mBbbN{}. \mforall{}s:\mBbbN{}n {}\mrightarrow{} T. Dec(\mexists{}i:\mBbbN{}n. ((\muparrow{}isl(M i s)) \mwedge{} outl(M i s) < n))
\mvdash{} \mforall{}f:\mBbbN{} {}\mrightarrow{} T
\mexists{}n:\mBbbN{}
((((\mlambda{}n,s. case d n s of inl(t) => M (fst(t)) s | inr(x) => inr \mcdot{} ) n f) = (inl (F f)))
\mwedge{} (\mforall{}m:\mBbbN{}
((\muparrow{}isl((\mlambda{}n,s. case d n s of inl(t) => M (fst(t)) s | inr(x) => inr \mcdot{} ) m f))
{}\mRightarrow{} (((\mlambda{}n,s. case d n s of inl(t) => M (fst(t)) s | inr(x) => inr \mcdot{} ) m f) = (inl (F f)))))\000C)
By
Latex:
(Reduce 0 THEN ParallelOp -2 THEN ExRepD)
Home
Index