Nuprl Lemma : add-wf
∀[x,y:ℤ].  (x + y ∈ ℤ)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
add: n + m
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
addEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache
Latex:
\mforall{}[x,y:\mBbbZ{}].    (x  +  y  \mmember{}  \mBbbZ{})
Date html generated:
2016_05_13-PM-03_07_03
Last ObjectModification:
2016_01_06-PM-05_28_45
Theory : core_2
Home
Index