Nuprl Lemma : cand_wf
∀[A,B:ℙ].  (A c∧ B ∈ ℙ)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cand: A c∧ B
, 
prop: ℙ
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
productEquality, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache
Latex:
\mforall{}[A,B:\mBbbP{}].    (A  c\mwedge{}  B  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_06_55
Last ObjectModification:
2016_01_06-PM-05_28_49
Theory : core_2
Home
Index