Nuprl Lemma : cand_wf

[A,B:ℙ].  (A c∧ B ∈ ℙ)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] cand: c∧ B prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cand: c∧ B prop:
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut productEquality sqequalHypSubstitution sqequalRule hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality isectElimination thin because_Cache

Latex:
\mforall{}[A,B:\mBbbP{}].    (A  c\mwedge{}  B  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_06_55
Last ObjectModification: 2016_01_06-PM-05_28_49

Theory : core_2


Home Index