Nuprl Lemma : classical-excluded-middle

P:ℙ{P ∨ P)}


Proof




Definitions occuring in Statement :  classical: {P} prop: all: x:A. B[x] not: ¬A or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T prop: classical: {P} uall: [x:A]. B[x] not: ¬A implies:  Q false: False guard: {T} or: P ∨ Q decidable: Dec(P)
Lemmas referenced :  not_wf or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation universeEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis classicalIntroduction independent_functionElimination voidElimination addLevel levelHypothesis sqequalRule inrFormation inlFormation unionElimination

Latex:
\mforall{}P:\mBbbP{}.  \{P  \mvee{}  (\mneg{}P)\}



Date html generated: 2016_05_13-PM-03_16_32
Last ObjectModification: 2016_01_06-PM-05_21_13

Theory : core_2


Home Index