Nuprl Lemma : classical-excluded-middle
∀P:ℙ. {P ∨ (¬P)}
Proof
Definitions occuring in Statement :
classical: {P}
,
prop: ℙ
,
all: ∀x:A. B[x]
,
not: ¬A
,
or: P ∨ Q
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
prop: ℙ
,
classical: {P}
,
uall: ∀[x:A]. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
guard: {T}
,
or: P ∨ Q
,
decidable: Dec(P)
Lemmas referenced :
not_wf,
or_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
universeEquality,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
classicalIntroduction,
independent_functionElimination,
voidElimination,
addLevel,
levelHypothesis,
sqequalRule,
inrFormation,
inlFormation,
unionElimination
Latex:
\mforall{}P:\mBbbP{}. \{P \mvee{} (\mneg{}P)\}
Date html generated:
2016_05_13-PM-03_16_32
Last ObjectModification:
2016_01_06-PM-05_21_13
Theory : core_2
Home
Index