Nuprl Lemma : classical-excluded-middle
∀P:ℙ. {P ∨ (¬P)}
Proof
Definitions occuring in Statement : 
classical: {P}
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
classical: {P}
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
guard: {T}
, 
or: P ∨ Q
, 
decidable: Dec(P)
Lemmas referenced : 
not_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
universeEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
classicalIntroduction, 
independent_functionElimination, 
voidElimination, 
addLevel, 
levelHypothesis, 
sqequalRule, 
inrFormation, 
inlFormation, 
unionElimination
Latex:
\mforall{}P:\mBbbP{}.  \{P  \mvee{}  (\mneg{}P)\}
Date html generated:
2016_05_13-PM-03_16_32
Last ObjectModification:
2016_01_06-PM-05_21_13
Theory : core_2
Home
Index