Nuprl Lemma : classical_wf

[P:ℙ]. ({P} ∈ ℙ)


Proof




Definitions occuring in Statement :  classical: {P} uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T classical: {P} so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  unit_wf set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[P:\mBbbP{}].  (\{P\}  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_16_28
Last ObjectModification: 2016_01_06-PM-05_20_49

Theory : core_2


Home Index