Nuprl Lemma : classical_wf
∀[P:ℙ]. ({P} ∈ ℙ)
Proof
Definitions occuring in Statement : 
classical: {P}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
classical: {P}
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
unit_wf, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[P:\mBbbP{}].  (\{P\}  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_16_28
Last ObjectModification:
2016_01_06-PM-05_20_49
Theory : core_2
Home
Index