Nuprl Lemma : equality-test2

[A,B,C:Type].
  ((A B ∈ Type)
   (C B ∈ Type)
   (∀[f:A ⟶ A]. ∀[x,y,z,u,w:A].  ((x (f y) ∈ A)  (z (f y) ∈ A)  (w u ∈ C)  (w z ∈ C)  (u x ∈ C))))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q subtype_rel: A ⊆B respects-equality: respects-equality(S;T) all: x:A. B[x]
Lemmas referenced :  respects-equality_weakening istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  equalityTransitivity equalitySymmetry hypothesis applyEquality Error :lambdaEquality_alt,  hyp_replacement hypothesisEquality Error :universeIsType,  sqequalHypSubstitution sqequalRule Error :equalityIstype,  Error :inhabitedIsType,  extract_by_obid isectElimination thin independent_functionElimination dependent_functionElimination because_Cache axiomEquality Error :functionIsTypeImplies,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :functionIsType,  instantiate universeEquality

Latex:
\mforall{}[A,B,C:Type].
    ((A  =  B)
    {}\mRightarrow{}  (C  =  B)
    {}\mRightarrow{}  (\mforall{}[f:A  {}\mrightarrow{}  A].  \mforall{}[x,y,z,u,w:A].    ((x  =  (f  y))  {}\mRightarrow{}  (z  =  (f  y))  {}\mRightarrow{}  (w  =  u)  {}\mRightarrow{}  (w  =  z)  {}\mRightarrow{}  (u  =  x))))



Date html generated: 2019_06_20-PM-01_04_14
Last ObjectModification: 2019_06_20-PM-01_02_00

Theory : core_2


Home Index