Nuprl Lemma : equality-test2
∀[A,B,C:Type].
  ((A = B ∈ Type)
  
⇒ (C = B ∈ Type)
  
⇒ (∀[f:A ⟶ A]. ∀[x,y,z,u,w:A].  ((x = (f y) ∈ A) 
⇒ (z = (f y) ∈ A) 
⇒ (w = u ∈ C) 
⇒ (w = z ∈ C) 
⇒ (u = x ∈ C))))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
respects-equality: respects-equality(S;T)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
respects-equality_weakening, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
applyEquality, 
Error :lambdaEquality_alt, 
hyp_replacement, 
hypothesisEquality, 
Error :universeIsType, 
sqequalHypSubstitution, 
sqequalRule, 
Error :equalityIstype, 
Error :inhabitedIsType, 
extract_by_obid, 
isectElimination, 
thin, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :functionIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[A,B,C:Type].
    ((A  =  B)
    {}\mRightarrow{}  (C  =  B)
    {}\mRightarrow{}  (\mforall{}[f:A  {}\mrightarrow{}  A].  \mforall{}[x,y,z,u,w:A].    ((x  =  (f  y))  {}\mRightarrow{}  (z  =  (f  y))  {}\mRightarrow{}  (w  =  u)  {}\mRightarrow{}  (w  =  z)  {}\mRightarrow{}  (u  =  x))))
Date html generated:
2019_06_20-PM-01_04_14
Last ObjectModification:
2019_06_20-PM-01_02_00
Theory : core_2
Home
Index