Nuprl Lemma : int_eq_wf
∀[T:Type]. ∀[a,b:T]. ∀[x,y:ℤ]. (if x=y then a else b ∈ T)
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
int_eq: if a=b then c else d
,
int: ℤ
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
int_eqEquality,
hypothesisEquality,
sqequalHypSubstitution,
hypothesis,
sqequalRule,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
intEquality,
isect_memberEquality,
isectElimination,
thin,
because_Cache,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[a,b:T]. \mforall{}[x,y:\mBbbZ{}]. (if x=y then a else b \mmember{} T)
Date html generated:
2016_05_13-PM-03_15_54
Last ObjectModification:
2016_01_06-PM-05_21_39
Theory : core_2
Home
Index