Nuprl Lemma : int_eq_wf
∀[T:Type]. ∀[a,b:T]. ∀[x,y:ℤ].  (if x=y  then a  else b ∈ T)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_eq: if a=b  then c  else d
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
int_eqEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[a,b:T].  \mforall{}[x,y:\mBbbZ{}].    (if  x=y    then  a    else  b  \mmember{}  T)
Date html generated:
2016_05_13-PM-03_15_54
Last ObjectModification:
2016_01_06-PM-05_21_39
Theory : core_2
Home
Index