Nuprl Lemma : int_eq_wf

[T:Type]. ∀[a,b:T]. ∀[x,y:ℤ].  (if x=y  then a  else b ∈ T)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] member: t ∈ T int_eq: if a=b  then c  else d int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T false: False implies:  Q not: ¬A
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut int_eqEquality hypothesisEquality sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry intEquality isect_memberEquality isectElimination thin because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[a,b:T].  \mforall{}[x,y:\mBbbZ{}].    (if  x=y    then  a    else  b  \mmember{}  T)



Date html generated: 2016_05_13-PM-03_15_54
Last ObjectModification: 2016_01_06-PM-05_21_39

Theory : core_2


Home Index