Nuprl Lemma : kcomb_wf
∀[A,B:Type].  (K ∈ A ⟶ B ⟶ A)
Proof
Definitions occuring in Statement : 
kcomb: K
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
kcomb: K
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
isect_memberEquality, 
isectElimination, 
thin, 
universeEquality, 
Error :universeIsType
Latex:
\mforall{}[A,B:Type].    (K  \mmember{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  A)
Date html generated:
2019_06_20-AM-11_14_39
Last ObjectModification:
2018_09_26-AM-10_42_01
Theory : core_2
Home
Index