Nuprl Lemma : lambda-wf
∀[A,B:Type]. ∀[f:A ⟶ B].  (λx.f[x] ∈ A ⟶ B)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].    (\mlambda{}x.f[x]  \mmember{}  A  {}\mrightarrow{}  B)
Date html generated:
2016_05_13-PM-03_06_51
Last ObjectModification:
2016_01_06-PM-05_28_51
Theory : core_2
Home
Index