Nuprl Lemma : lambda-wf

[A,B:Type]. ∀[f:A ⟶ B].  x.f[x] ∈ A ⟶ B)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s]
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality applyEquality hypothesisEquality sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality isectElimination thin because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].    (\mlambda{}x.f[x]  \mmember{}  A  {}\mrightarrow{}  B)



Date html generated: 2016_05_13-PM-03_06_51
Last ObjectModification: 2016_01_06-PM-05_28_51

Theory : core_2


Home Index