Nuprl Lemma : less-member
∀[T:Type]. ∀[n,m:ℤ]. ∀[a,b:T].  (if (n) < (m)  then a  else b ∈ T)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
less: if (a) < (b)  then c  else d
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
lessCases, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
axiomSqEquality, 
extract_by_obid, 
isect_memberEquality, 
because_Cache, 
voidElimination, 
voidEquality, 
axiomEquality, 
intEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[n,m:\mBbbZ{}].  \mforall{}[a,b:T].    (if  (n)  <  (m)    then  a    else  b  \mmember{}  T)
Date html generated:
2019_06_20-AM-11_18_44
Last ObjectModification:
2018_08_20-PM-09_28_05
Theory : core_2
Home
Index