Nuprl Lemma : minimal-not-not-implies-program
∀[P,A:ℙ].  (((((P 
⇒ A) 
⇒ A) 
⇒ (P ∨ A)) 
⇒ A) 
⇒ A)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
minimal-not-not-xmiddle, 
minimal-not-not-implies, 
member: t ∈ T
Lemmas referenced : 
minimal-not-not-implies, 
minimal-not-not-xmiddle
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}[P,A:\mBbbP{}].    (((((P  {}\mRightarrow{}  A)  {}\mRightarrow{}  A)  {}\mRightarrow{}  (P  \mvee{}  A))  {}\mRightarrow{}  A)  {}\mRightarrow{}  A)
Date html generated:
2018_05_24-PM-02_14_30
Last ObjectModification:
2018_05_23-PM-01_53_24
Theory : core_2
Home
Index