Nuprl Lemma : minimal-not-not-implies

[P,A:ℙ].  (((((P  A)  A)  (P ∨ A))  A)  A)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: implies:  Q or: P ∨ Q
Definitions unfolded in proof :  or: P ∨ Q guard: {T} implies:  Q prop: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  or_wf minimal-not-not-xmiddle
Rules used in proof :  unionElimination inlFormation inrFormation sqequalRule functionEquality independent_functionElimination hypothesis lambdaFormation universeEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[P,A:\mBbbP{}].    (((((P  {}\mRightarrow{}  A)  {}\mRightarrow{}  A)  {}\mRightarrow{}  (P  \mvee{}  A))  {}\mRightarrow{}  A)  {}\mRightarrow{}  A)



Date html generated: 2018_05_24-PM-02_14_27
Last ObjectModification: 2018_05_23-PM-01_49_49

Theory : core_2


Home Index