Nuprl Lemma : not_functionality_wrt_uimplies
∀[P,Q:ℙ].  ({P supposing Q} 
⇒ {¬Q supposing ¬P})
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
not: ¬A
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
false: False
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
false_wf, 
isect_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
independent_isectElimination, 
thin, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
hypothesisEquality, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
Error :functionIsType, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
cumulativity, 
isect_memberEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
isectEquality, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mforall{}[P,Q:\mBbbP{}].    (\{P  supposing  Q\}  {}\mRightarrow{}  \{\mneg{}Q  supposing  \mneg{}P\})
Date html generated:
2019_06_20-AM-11_14_17
Last ObjectModification:
2018_09_26-AM-10_41_52
Theory : core_2
Home
Index