Nuprl Lemma : not_over_not
∀[A:ℙ]. (Dec(A) 
⇒ (¬¬A 
⇐⇒ A))
Proof
Definitions occuring in Statement : 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
decidable_wf, 
false_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
introduction, 
lambdaEquality, 
functionEquality, 
sqequalRule, 
universeEquality
Latex:
\mforall{}[A:\mBbbP{}].  (Dec(A)  {}\mRightarrow{}  (\mneg{}\mneg{}A  \mLeftarrow{}{}\mRightarrow{}  A))
Date html generated:
2016_05_13-PM-03_11_08
Last ObjectModification:
2016_01_06-PM-05_25_29
Theory : core_2
Home
Index