Nuprl Lemma : not_over_not

[A:ℙ]. (Dec(A)  (¬¬⇐⇒ A))


Proof




Definitions occuring in Statement :  decidable: Dec(P) uall: [x:A]. B[x] prop: iff: ⇐⇒ Q not: ¬A implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q decidable: Dec(P) or: P ∨ Q not: ¬A false: False member: t ∈ T prop: rev_implies:  Q
Lemmas referenced :  decidable_wf false_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution unionElimination thin hypothesis independent_functionElimination voidElimination cut lemma_by_obid isectElimination hypothesisEquality introduction lambdaEquality functionEquality sqequalRule universeEquality

Latex:
\mforall{}[A:\mBbbP{}].  (Dec(A)  {}\mRightarrow{}  (\mneg{}\mneg{}A  \mLeftarrow{}{}\mRightarrow{}  A))



Date html generated: 2016_05_13-PM-03_11_08
Last ObjectModification: 2016_01_06-PM-05_25_29

Theory : core_2


Home Index