Nuprl Lemma : rev_uimplies_wf
∀[P,Q:ℙ].  (rev_uimplies(P;Q) ∈ ℙ)
Proof
Definitions occuring in Statement : 
rev_uimplies: rev_uimplies(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
isect_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[P,Q:\mBbbP{}].    (rev\_uimplies(P;Q)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_07_15
Last ObjectModification:
2016_01_06-PM-05_28_35
Theory : core_2
Home
Index