Nuprl Lemma : scomb_wf
∀[A,B,C:Type].  (S ∈ (A ⟶ B ⟶ C) ⟶ (A ⟶ B) ⟶ A ⟶ C)
Proof
Definitions occuring in Statement : 
scomb: S
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
scomb: S
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache
Latex:
\mforall{}[A,B,C:Type].    (S  \mmember{}  (A  {}\mrightarrow{}  B  {}\mrightarrow{}  C)  {}\mrightarrow{}  (A  {}\mrightarrow{}  B)  {}\mrightarrow{}  A  {}\mrightarrow{}  C)
Date html generated:
2016_05_13-PM-03_08_24
Last ObjectModification:
2016_01_06-PM-05_27_43
Theory : core_2
Home
Index