Nuprl Lemma : set-wf

[A:Type]. ∀[P:A ⟶ ℙ].  ({a:A| P[a]}  ∈ Type)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] subtype_rel: A ⊆B prop:
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setEquality hypothesisEquality applyEquality hypothesis thin lambdaEquality sqequalHypSubstitution sqequalRule universeEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity isect_memberEquality isectElimination because_Cache

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    (\{a:A|  P[a]\}    \mmember{}  Type)



Date html generated: 2016_05_13-PM-03_07_00
Last ObjectModification: 2016_01_06-PM-05_28_47

Theory : core_2


Home Index