Nuprl Lemma : sq_stable_iff_uimplies

[P:ℙ]. (SqStable(P) ⇐⇒ supposing P)


Proof




Definitions occuring in Statement :  sq_stable: SqStable(P) uimplies: supposing a uall: [x:A]. B[x] prop: iff: ⇐⇒ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q uimplies: supposing a member: t ∈ T prop: rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T
Lemmas referenced :  squash_wf isect_wf sq_stable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality universeEquality independent_functionElimination introduction imageMemberEquality baseClosed imageElimination rename equalityTransitivity equalitySymmetry

Latex:
\mforall{}[P:\mBbbP{}].  (SqStable(P)  \mLeftarrow{}{}\mRightarrow{}  P  supposing  P)



Date html generated: 2016_05_13-PM-03_10_33
Last ObjectModification: 2016_01_06-PM-05_48_12

Theory : core_2


Home Index