Nuprl Lemma : sq_stable_iff_uimplies
∀[P:ℙ]. (SqStable(P)
⇐⇒ P supposing P)
Proof
Definitions occuring in Statement :
sq_stable: SqStable(P)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
iff: P
⇐⇒ Q
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
uimplies: b supposing a
,
member: t ∈ T
,
prop: ℙ
,
rev_implies: P
⇐ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_stable: SqStable(P)
,
squash: ↓T
Lemmas referenced :
squash_wf,
isect_wf,
sq_stable_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
independent_pairFormation,
lambdaFormation,
hypothesisEquality,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
sqequalRule,
lambdaEquality,
universeEquality,
independent_functionElimination,
introduction,
imageMemberEquality,
baseClosed,
imageElimination,
rename,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[P:\mBbbP{}]. (SqStable(P) \mLeftarrow{}{}\mRightarrow{} P supposing P)
Date html generated:
2016_05_13-PM-03_10_33
Last ObjectModification:
2016_01_06-PM-05_48_12
Theory : core_2
Home
Index