Nuprl Lemma : sq_stable_iff_uimplies
∀[P:ℙ]. (SqStable(P) 
⇐⇒ P supposing P)
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
squash_wf, 
isect_wf, 
sq_stable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
universeEquality, 
independent_functionElimination, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[P:\mBbbP{}].  (SqStable(P)  \mLeftarrow{}{}\mRightarrow{}  P  supposing  P)
Date html generated:
2016_05_13-PM-03_10_33
Last ObjectModification:
2016_01_06-PM-05_48_12
Theory : core_2
Home
Index