Nuprl Lemma : squash_thru_implies_dec
∀[P,Q:ℙ].  uiff(↓P ⇒ Q;P ⇒ (↓Q)) supposing Dec(P)
Proof
Definitions occuring in Statement : 
decidable: Dec(P), 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
squash: ↓T, 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
implies: P ⇒ Q, 
squash: ↓T, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
false: False
Lemmas referenced : 
decidable_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
imageElimination, 
independent_functionElimination, 
thin, 
hypothesis, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
lambdaEquality, 
dependent_functionElimination, 
lemma_by_obid, 
isectElimination, 
functionEquality, 
unionElimination, 
voidElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[P,Q:\mBbbP{}].    uiff(\mdownarrow{}P  {}\mRightarrow{}  Q;P  {}\mRightarrow{}  (\mdownarrow{}Q))  supposing  Dec(P)
Date html generated:
2016_05_13-PM-03_16_22
Last ObjectModification:
2016_01_06-PM-05_50_09
Theory : core_2
Home
Index