Nuprl Lemma : stable__and
∀[P,Q:ℙ].  (Stable{P} 
⇒ Stable{Q} 
⇒ Stable{P ∧ Q})
Proof
Definitions occuring in Statement : 
stable: Stable{P}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
and: P ∧ Q
, 
prop: ℙ
, 
false: False
, 
not: ¬A
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
stable: Stable{P}
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
stable_wf, 
not_wf
Rules used in proof : 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
universeEquality, 
independent_pairFormation, 
rename, 
hypothesis, 
cumulativity, 
productEquality, 
isectElimination, 
extract_by_obid, 
voidElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
lambdaEquality, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[P,Q:\mBbbP{}].    (Stable\{P\}  {}\mRightarrow{}  Stable\{Q\}  {}\mRightarrow{}  Stable\{P  \mwedge{}  Q\})
Date html generated:
2016_10_21-AM-09_34_53
Last ObjectModification:
2016_09_26-PM-00_40_12
Theory : core_2
Home
Index