Nuprl Lemma : uimplies-wf
∀[A:ℙ]. ∀[B:⋂a:A. ℙ].  (B supposing A ∈ ℙ)
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
isect: ⋂x:A. B[x]
Definitions unfolded in proof : 
uimplies: b supposing a
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
isectEquality, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
hypothesis, 
rename, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
universeEquality, 
sqequalHypSubstitution, 
axiomEquality, 
isect_memberEquality, 
thin, 
because_Cache
Latex:
\mforall{}[A:\mBbbP{}].  \mforall{}[B:\mcap{}a:A.  \mBbbP{}].    (B  supposing  A  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_07_11
Last ObjectModification:
2016_01_06-PM-05_28_32
Theory : core_2
Home
Index