Nuprl Lemma : eq_id_self
∀[a:Id]. (a = a ~ tt)
Proof
Definitions occuring in Statement :
eq_id: a = b
,
Id: Id
,
btrue: tt
,
uall: ∀[x:A]. B[x]
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
eq_id: a = b
,
eqof: eqof(d)
,
sq_type: SQType(T)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
guard: {T}
Lemmas referenced :
subtype_base_sq,
bool_subtype_base,
eqof_eq_btrue,
Id_wf,
id-deq_wf,
btrue_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
thin,
instantiate,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
because_Cache,
independent_isectElimination,
hypothesis,
sqequalRule,
hypothesisEquality,
dependent_functionElimination,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
sqequalAxiom
Latex:
\mforall{}[a:Id]. (a = a \msim{} tt)
Date html generated:
2016_05_14-PM-03_37_17
Last ObjectModification:
2015_12_26-PM-05_58_54
Theory : decidable!equality
Home
Index