Nuprl Lemma : deq_subtype

[T:Type]. (EqDecider(T) ⊆(T ⟶ T ⟶ 𝔹))


Proof




Definitions occuring in Statement :  deq: EqDecider(T) bool: 𝔹 subtype_rel: A ⊆B uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B deq: EqDecider(T)
Lemmas referenced :  bool_wf deq_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lemma_by_obid hypothesis isect_memberFormation introduction lambdaEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality isectElimination sqequalRule axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  (EqDecider(T)  \msubseteq{}r  (T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}))



Date html generated: 2016_05_14-AM-06_06_16
Last ObjectModification: 2015_12_26-AM-11_46_48

Theory : equality!deciders


Home Index