Nuprl Lemma : deq_subtype
∀[T:Type]. (EqDecider(T) ⊆r (T ⟶ T ⟶ 𝔹))
Proof
Definitions occuring in Statement : 
deq: EqDecider(T)
, 
bool: 𝔹
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
deq: EqDecider(T)
Lemmas referenced : 
bool_wf, 
deq_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lemma_by_obid, 
hypothesis, 
isect_memberFormation, 
introduction, 
lambdaEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
isectElimination, 
sqequalRule, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  (EqDecider(T)  \msubseteq{}r  (T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}))
Date html generated:
2016_05_14-AM-06_06_16
Last ObjectModification:
2015_12_26-AM-11_46_48
Theory : equality!deciders
Home
Index