Nuprl Lemma : finite'_wf
∀[T:Type]. (finite'(T) ∈ ℙ)
Proof
Definitions occuring in Statement :
finite': finite'(T)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
finite': finite'(T)
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
so_apply: x[s]
Lemmas referenced :
all_wf,
inject_wf,
surject_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
functionEquality,
cumulativity,
hypothesisEquality,
lambdaEquality,
functionExtensionality,
applyEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeEquality
Latex:
\mforall{}[T:Type]. (finite'(T) \mmember{} \mBbbP{})
Date html generated:
2016_10_21-AM-10_59_39
Last ObjectModification:
2016_08_06-PM-02_27_39
Theory : equipollence!!cardinality!
Home
Index