Nuprl Lemma : powerset_wf
∀[T:Type]. (powerset(T) ∈ Type)
Proof
Definitions occuring in Statement :
powerset: powerset(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
powerset: powerset(T)
Lemmas referenced :
int_seg_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
functionEquality,
hypothesisEquality,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
natural_numberEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
universeEquality
Latex:
\mforall{}[T:Type]. (powerset(T) \mmember{} Type)
Date html generated:
2016_05_14-PM-04_02_18
Last ObjectModification:
2015_12_26-PM-07_42_54
Theory : equipollence!!cardinality!
Home
Index