Step
*
1
2
1
of Lemma
fset-ac-le-distributive-constrained
1. T : Type
2. eq : EqDecider(T)
3. P : fset(T) ⟶ 𝔹
4. ∀x,y:fset(T).  (y ⊆ x 
⇒ (↑(P x)) 
⇒ (↑(P y)))
5. a : {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])} 
6. b : {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])} 
7. c : {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P[a])} 
⊢ fset-ac-le(eq;glb(P;a;c);lub(P;b;c))
BY
{ (Using [`ac2',⌜c⌝] (BLemma `fset-ac-le_transitivity`)⋅
   THEN Auto
   THEN (InstLemma `fset-constrained-ac-glb-is-glb` [⌜T⌝;⌜eq⌝;⌜P⌝;⌜a⌝;⌜c⌝]⋅ THEN Auto)
   THEN InstLemma `fset-constrained-ac-lub-is-lub` [⌜T⌝;⌜eq⌝;⌜P⌝;⌜b⌝;⌜c⌝]⋅
   THEN Auto) }
Latex:
Latex:
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  P  :  fset(T)  {}\mrightarrow{}  \mBbbB{}
4.  \mforall{}x,y:fset(T).    (y  \msubseteq{}  x  {}\mRightarrow{}  (\muparrow{}(P  x))  {}\mRightarrow{}  (\muparrow{}(P  y)))
5.  a  :  \{ac:fset(fset(T))|  (\muparrow{}fset-antichain(eq;ac))  \mwedge{}  fset-all(ac;a.P[a])\} 
6.  b  :  \{ac:fset(fset(T))|  (\muparrow{}fset-antichain(eq;ac))  \mwedge{}  fset-all(ac;a.P[a])\} 
7.  c  :  \{ac:fset(fset(T))|  (\muparrow{}fset-antichain(eq;ac))  \mwedge{}  fset-all(ac;a.P[a])\} 
\mvdash{}  fset-ac-le(eq;glb(P;a;c);lub(P;b;c))
By
Latex:
(Using  [`ac2',\mkleeneopen{}c\mkleeneclose{}]  (BLemma  `fset-ac-le\_transitivity`)\mcdot{}
  THEN  Auto
  THEN  (InstLemma  `fset-constrained-ac-glb-is-glb`  [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}eq\mkleeneclose{};\mkleeneopen{}P\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{}  THEN  Auto)
  THEN  InstLemma  `fset-constrained-ac-lub-is-lub`  [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}eq\mkleeneclose{};\mkleeneopen{}P\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{}
  THEN  Auto)
Home
Index