Step
*
1
1
2
3
1
2
1
1
of Lemma
fset-closure-exists
1. T : Type
2. eq : EqDecider(T)
3. r : T ⟶ ℕ
4. fs : (T ⟶ T) List
5. (∀f∈fs.∀x:T. ((¬((f x) = x ∈ T))
⇒ r (f x) < r x))
6. ∀x,y:T. Dec(x = y ∈ T)
7. n : ℤ
8. 0 < n
9. ∀s:fset(T). ((∀x:T. (x ∈ s
⇒ ((r x) ≤ (n - 1))))
⇒ (∃c:fset(T). (c = fs closure of s)))
10. s : fset(T)
11. ∀x:T. (x ∈ s
⇒ ((r x) ≤ n))
12. c : fset(T)
13. (c = fs closure of {x ∈ s | r x ≤z n - 1} ⋃ fset-list-union(eq;map(λf.f"({x ∈ s | (r x =z n) ∧b (¬b(eq (f x) x))});
fs)))
14. (s ⋃ c closed under fs)
15. c' : fset(T)
16. s ⊆ c'
17. (c' closed under fs)
18. a : T
19. a ∈ s
⊢ a ∈ c'
BY
{ Auto' }
Latex:
Latex:
1. T : Type
2. eq : EqDecider(T)
3. r : T {}\mrightarrow{} \mBbbN{}
4. fs : (T {}\mrightarrow{} T) List
5. (\mforall{}f\mmember{}fs.\mforall{}x:T. ((\mneg{}((f x) = x)) {}\mRightarrow{} r (f x) < r x))
6. \mforall{}x,y:T. Dec(x = y)
7. n : \mBbbZ{}
8. 0 < n
9. \mforall{}s:fset(T). ((\mforall{}x:T. (x \mmember{} s {}\mRightarrow{} ((r x) \mleq{} (n - 1)))) {}\mRightarrow{} (\mexists{}c:fset(T). (c = fs closure of s)))
10. s : fset(T)
11. \mforall{}x:T. (x \mmember{} s {}\mRightarrow{} ((r x) \mleq{} n))
12. c : fset(T)
13. (c = fs closure of \{x \mmember{} s | r x \mleq{}z n - 1\} \mcup{} fset-list-union(eq;map(\mlambda{}f.f"(\{x \mmember{} s | (r x =\msubz{} n)
\mwedge{}\msubb{} (\mneg{}\msubb{}(eq (f x) x))\});
fs)))
14. (s \mcup{} c closed under fs)
15. c' : fset(T)
16. s \msubseteq{} c'
17. (c' closed under fs)
18. a : T
19. a \mmember{} s
\mvdash{} a \mmember{} c'
By
Latex:
Auto'
Home
Index