Nuprl Lemma : fset-closure-exists

[T:Type]
  ∀eq:EqDecider(T). ∀r:T ⟶ ℕ. ∀fs:(T ⟶ T) List.
    ∀s:fset(T). ∃c:fset(T). (c fs closure of s) supposing (∀f∈fs.∀x:T. ((¬((f x) x ∈ T))  (f x) < x))


Proof




Definitions occuring in Statement :  fset-closure: (c fs closure of s) fset: fset(T) l_all: (∀x∈L.P[x]) list: List deq: EqDecider(T) nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T l_all: (∀x∈L.P[x]) implies:  Q int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: less_than: a < b squash: T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] nat: fset-closure: (c fs closure of s) cand: c∧ B fset-closed: (s closed under fs) iff: ⇐⇒ Q rev_implies:  Q true: True ge: i ≥  bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) deq: EqDecider(T) bfalse: ff le: A ≤ B sq_stable: SqStable(P) eqof: eqof(d) f-subset: xs ⊆ ys rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  member-less_than select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma not_wf equal_wf int_seg_wf decidable-equal-deq fset_wf l_all_wf all_wf less_than_wf l_member_wf list_wf nat_wf deq_wf fset-member_wf le_wf subtract_wf exists_wf fset-closure_wf set_wf primrec-wf2 fset-closed_wf f-subset_wf f-subset_weakening l_all_iff isect_wf squash_wf true_wf iff_weakening_equal fset-member_witness nat_properties fset-union_wf fset-filter_wf le_int_wf fset-list-union_wf map_wf fset-image_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int bnot_wf member-fset-union band_wf less_than'_wf member-fset-filter assert_of_le_int member-fset-list-union l_exists_iff member_map member-fset-image-iff sq_stable__le assert_wf eqof_wf equal-wf-T-base int_subtype_base iff_transitivity iff_weakening_uiff assert_of_band assert_of_bnot safe-assert-deq itermSubtract_wf intformeq_wf int_term_value_subtract_lemma int_formula_prop_eq_lemma f-subset-union member-fset-image decidable__equal_int sq_stable__fset-member and_wf fset-max_wf fset-max_property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality extract_by_obid isectElimination applyEquality functionExtensionality cumulativity functionEquality because_Cache setElimination rename hypothesis independent_isectElimination natural_numberEquality productElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination independent_functionElimination setEquality universeEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed applyLambdaEquality equalityElimination independent_pairEquality axiomEquality promote_hyp hyp_replacement productEquality impliesFunctionality inlFormation inrFormation addLevel dependent_set_memberEquality

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}r:T  {}\mrightarrow{}  \mBbbN{}.  \mforall{}fs:(T  {}\mrightarrow{}  T)  List.
        \mforall{}s:fset(T).  \mexists{}c:fset(T).  (c  =  fs  closure  of  s) 
        supposing  (\mforall{}f\mmember{}fs.\mforall{}x:T.  ((\mneg{}((f  x)  =  x))  {}\mRightarrow{}  r  (f  x)  <  r  x))



Date html generated: 2017_04_17-AM-09_21_56
Last ObjectModification: 2017_02_27-PM-05_26_08

Theory : finite!sets


Home Index