Nuprl Lemma : fset-closure-exists
∀[T:Type]
  ∀eq:EqDecider(T). ∀r:T ⟶ ℕ. ∀fs:(T ⟶ T) List.
    ∀s:fset(T). ∃c:fset(T). (c = fs closure of s) supposing (∀f∈fs.∀x:T. ((¬((f x) = x ∈ T)) ⇒ r (f x) < r x))
Proof
Definitions occuring in Statement : 
fset-closure: (c = fs closure of s), 
fset: fset(T), 
l_all: (∀x∈L.P[x]), 
list: T List, 
deq: EqDecider(T), 
nat: ℕ, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
l_all: (∀x∈L.P[x]), 
implies: P ⇒ Q, 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
prop: ℙ, 
less_than: a < b, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
fset-closure: (c = fs closure of s), 
cand: A c∧ B, 
fset-closed: (s closed under fs), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
true: True, 
ge: i ≥ j , 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
deq: EqDecider(T), 
bfalse: ff, 
le: A ≤ B, 
sq_stable: SqStable(P), 
eqof: eqof(d), 
f-subset: xs ⊆ ys, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
member-less_than, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
not_wf, 
equal_wf, 
int_seg_wf, 
decidable-equal-deq, 
fset_wf, 
l_all_wf, 
all_wf, 
less_than_wf, 
l_member_wf, 
list_wf, 
nat_wf, 
deq_wf, 
fset-member_wf, 
le_wf, 
subtract_wf, 
exists_wf, 
fset-closure_wf, 
set_wf, 
primrec-wf2, 
fset-closed_wf, 
f-subset_wf, 
f-subset_weakening, 
l_all_iff, 
isect_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
fset-member_witness, 
nat_properties, 
fset-union_wf, 
fset-filter_wf, 
le_int_wf, 
fset-list-union_wf, 
map_wf, 
fset-image_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
bnot_wf, 
member-fset-union, 
band_wf, 
less_than'_wf, 
member-fset-filter, 
assert_of_le_int, 
member-fset-list-union, 
l_exists_iff, 
member_map, 
member-fset-image-iff, 
sq_stable__le, 
assert_wf, 
eqof_wf, 
equal-wf-T-base, 
int_subtype_base, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
assert_of_bnot, 
safe-assert-deq, 
itermSubtract_wf, 
intformeq_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
f-subset-union, 
member-fset-image, 
decidable__equal_int, 
sq_stable__fset-member, 
and_wf, 
fset-max_wf, 
fset-max_property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
applyEquality, 
functionExtensionality, 
cumulativity, 
functionEquality, 
because_Cache, 
setElimination, 
rename, 
hypothesis, 
independent_isectElimination, 
natural_numberEquality, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
independent_functionElimination, 
setEquality, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
equalityElimination, 
independent_pairEquality, 
axiomEquality, 
promote_hyp, 
hyp_replacement, 
productEquality, 
impliesFunctionality, 
inlFormation, 
inrFormation, 
addLevel, 
dependent_set_memberEquality
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}r:T  {}\mrightarrow{}  \mBbbN{}.  \mforall{}fs:(T  {}\mrightarrow{}  T)  List.
        \mforall{}s:fset(T).  \mexists{}c:fset(T).  (c  =  fs  closure  of  s) 
        supposing  (\mforall{}f\mmember{}fs.\mforall{}x:T.  ((\mneg{}((f  x)  =  x))  {}\mRightarrow{}  r  (f  x)  <  r  x))
Date html generated:
2017_04_17-AM-09_21_56
Last ObjectModification:
2017_02_27-PM-05_26_08
Theory : finite!sets
Home
Index