Nuprl Lemma : fset-max_wf

[T:Type]. ∀[f:T ⟶ ℕ]. ∀[s:fset(T)].  (fset-max(f;s) ∈ ℕsupposing ∀x,y:T.  Dec(x y ∈ T)


Proof




Definitions occuring in Statement :  fset-max: fset-max(f;s) fset: fset(T) nat: decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fset: fset(T) quotient: x,y:A//B[x; y] and: P ∧ Q fset-max: fset-max(f;s) imax-list: imax-list(L) combine-list: combine-list(x,y.f[x; y];L) all: x:A. B[x] top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] nat: implies:  Q guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A so_apply: x[s1;s2] le: A ≤ B less_than': less_than'(a;b) comm: Comm(T;op) infix_ap: y squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q assoc: Assoc(T;op) sq_type: SQType(T)
Lemmas referenced :  nat_wf reduce_hd_cons_lemma reduce_tl_cons_lemma equal-wf-base list_wf set-equal_wf fset_wf all_wf decidable_wf equal_wf mk_deq_wf list_accum-set-equal-idemp imax_wf imax_nat nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf le_wf imax-idempotent false_wf squash_wf true_wf imax_com iff_weakening_equal imax_assoc subtype_base_sq int_subtype_base list_induction list_accum_wf map_wf map_nil_lemma list_accum_nil_lemma map_cons_lemma list_accum_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid hypothesis sqequalRule pertypeElimination productElimination thin dependent_functionElimination isect_memberEquality voidElimination voidEquality productEquality isectElimination cumulativity hypothesisEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry functionEquality lambdaEquality universeEquality rename dependent_set_memberEquality setElimination lambdaFormation applyLambdaEquality natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll independent_functionElimination applyEquality imageElimination imageMemberEquality baseClosed instantiate promote_hyp functionExtensionality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[s:fset(T)].    (fset-max(f;s)  \mmember{}  \mBbbN{})  supposing  \mforall{}x,y:T.    Dec(x  =  y)



Date html generated: 2017_04_17-AM-09_20_00
Last ObjectModification: 2017_02_27-PM-05_23_29

Theory : finite!sets


Home Index