Nuprl Lemma : fset-max_wf
∀[T:Type]. ∀[f:T ⟶ ℕ]. ∀[s:fset(T)].  (fset-max(f;s) ∈ ℕ) supposing ∀x,y:T.  Dec(x = y ∈ T)
Proof
Definitions occuring in Statement : 
fset-max: fset-max(f;s)
, 
fset: fset(T)
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
fset-max: fset-max(f;s)
, 
imax-list: imax-list(L)
, 
combine-list: combine-list(x,y.f[x; y];L)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
so_apply: x[s1;s2]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
comm: Comm(T;op)
, 
infix_ap: x f y
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
assoc: Assoc(T;op)
, 
sq_type: SQType(T)
Lemmas referenced : 
nat_wf, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
equal-wf-base, 
list_wf, 
set-equal_wf, 
fset_wf, 
all_wf, 
decidable_wf, 
equal_wf, 
mk_deq_wf, 
list_accum-set-equal-idemp, 
imax_wf, 
imax_nat, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
le_wf, 
imax-idempotent, 
false_wf, 
squash_wf, 
true_wf, 
imax_com, 
iff_weakening_equal, 
imax_assoc, 
subtype_base_sq, 
int_subtype_base, 
list_induction, 
list_accum_wf, 
map_wf, 
map_nil_lemma, 
list_accum_nil_lemma, 
map_cons_lemma, 
list_accum_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
thin, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productEquality, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
lambdaEquality, 
universeEquality, 
rename, 
dependent_set_memberEquality, 
setElimination, 
lambdaFormation, 
applyLambdaEquality, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
instantiate, 
promote_hyp, 
functionExtensionality
Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[s:fset(T)].    (fset-max(f;s)  \mmember{}  \mBbbN{})  supposing  \mforall{}x,y:T.    Dec(x  =  y)
Date html generated:
2017_04_17-AM-09_20_00
Last ObjectModification:
2017_02_27-PM-05_23_29
Theory : finite!sets
Home
Index