Nuprl Lemma : fset-list-union_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[ss:fset(T) List].  (fset-list-union(eq;ss) ∈ fset(T))


Proof




Definitions occuring in Statement :  fset-list-union: fset-list-union(eq;ss) fset: fset(T) list: List deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  fset-list-union: fset-list-union(eq;ss) uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  reduce_wf fset_wf fset-union_wf empty-fset_wf list_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ss:fset(T)  List].    (fset-list-union(eq;ss)  \mmember{}  fset(T))



Date html generated: 2016_05_14-PM-03_40_29
Last ObjectModification: 2015_12_26-PM-06_41_13

Theory : finite!sets


Home Index