Nuprl Lemma : fset-list-union_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[ss:fset(T) List].  (fset-list-union(eq;ss) ∈ fset(T))
Proof
Definitions occuring in Statement : 
fset-list-union: fset-list-union(eq;ss)
, 
fset: fset(T)
, 
list: T List
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
fset-list-union: fset-list-union(eq;ss)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
reduce_wf, 
fset_wf, 
fset-union_wf, 
empty-fset_wf, 
list_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ss:fset(T)  List].    (fset-list-union(eq;ss)  \mmember{}  fset(T))
Date html generated:
2016_05_14-PM-03_40_29
Last ObjectModification:
2015_12_26-PM-06_41_13
Theory : finite!sets
Home
Index