Nuprl Lemma : member-fset-image
∀[T,A:Type]. ∀[eqt:EqDecider(T)]. ∀[eqa:EqDecider(A)]. ∀[f:T ⟶ A]. ∀[s:fset(T)]. ∀[x:T].  f x ∈ f"(s) supposing x ∈ s
Proof
Definitions occuring in Statement : 
fset-image: f"(s)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
squash: ↓T
, 
implies: P 
⇒ Q
Lemmas referenced : 
deq_wf, 
fset_wf, 
fset-image_wf, 
fset-member_witness, 
equal_wf, 
fset-member_wf, 
and_wf, 
member-fset-image-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
independent_pairFormation, 
hypothesis, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T,A:Type].  \mforall{}[eqt:EqDecider(T)].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[f:T  {}\mrightarrow{}  A].  \mforall{}[s:fset(T)].  \mforall{}[x:T].
    f  x  \mmember{}  f"(s)  supposing  x  \mmember{}  s
Date html generated:
2016_05_14-PM-03_44_01
Last ObjectModification:
2016_01_14-PM-10_40_30
Theory : finite!sets
Home
Index