Nuprl Lemma : fset-max_property
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[f:T ⟶ ℕ]. ∀[s:fset(T)].
  ((∀[x:T]. (f x) ≤ fset-max(f;s) supposing x ∈ s)
  ∧ (¬((∀x:T. (x ∈ s 
⇒ f x < fset-max(f;s))) ∧ (¬(s = {} ∈ fset(T))))))
Proof
Definitions occuring in Statement : 
empty-fset: {}
, 
fset-max: fset-max(f;s)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
fset: fset(T)
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
fset-max: fset-max(f;s)
, 
fset-member: a ∈ s
, 
sq_type: SQType(T)
, 
guard: {T}
, 
true: True
, 
false: False
, 
le: A ≤ B
, 
not: ¬A
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
top: Top
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
iff: P 
⇐⇒ Q
, 
cons: [a / b]
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
fset-null: fset-null(s)
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
decidable-equal-deq, 
decidable__le, 
fset-max_wf, 
list_wf, 
set-equal_wf, 
set-equal-reflex, 
equal-wf-base, 
equal_wf, 
subtype_base_sq, 
int_subtype_base, 
less_than'_wf, 
fset-member_wf, 
all_wf, 
less_than_wf, 
not_wf, 
equal-wf-T-base, 
fset_wf, 
nat_wf, 
deq_wf, 
imax-list-lb, 
cons_wf, 
map_wf, 
imax-list_wf, 
length_of_cons_lemma, 
non_neg_length, 
map_length, 
decidable__lt, 
length_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
l_all_iff, 
false_wf, 
le_wf, 
l_member_wf, 
list-cases, 
length_of_nil_lemma, 
nil_member, 
product_subtype_list, 
length_wf_nat, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
assert-deq-member, 
cons_member, 
member_map, 
imax-list-ub, 
l_exists_iff, 
set_subtype_base, 
assert-fset-null, 
list_subtype_fset, 
assert_wf, 
null_wf, 
pos_length3, 
hd_wf, 
hd_member, 
nat_properties, 
decidable__equal_int, 
pos_length2, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
dependent_functionElimination, 
applyEquality, 
functionExtensionality, 
cumulativity, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
unionElimination, 
promote_hyp, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
productEquality, 
intEquality, 
natural_numberEquality, 
instantiate, 
voidElimination, 
independent_pairEquality, 
lambdaEquality, 
axiomEquality, 
isect_memberEquality, 
independent_pairFormation, 
functionEquality, 
baseClosed, 
universeEquality, 
setElimination, 
rename, 
voidEquality, 
addEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
dependent_set_memberEquality, 
hypothesis_subsumption, 
minusEquality, 
setEquality, 
inrFormation, 
addLevel, 
impliesFunctionality, 
levelHypothesis, 
impliesLevelFunctionality, 
applyLambdaEquality, 
imageElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[s:fset(T)].
    ((\mforall{}[x:T].  (f  x)  \mleq{}  fset-max(f;s)  supposing  x  \mmember{}  s)
    \mwedge{}  (\mneg{}((\mforall{}x:T.  (x  \mmember{}  s  {}\mRightarrow{}  f  x  <  fset-max(f;s)))  \mwedge{}  (\mneg{}(s  =  \{\})))))
Date html generated:
2017_04_17-AM-09_20_46
Last ObjectModification:
2017_02_27-PM-05_24_32
Theory : finite!sets
Home
Index