Nuprl Lemma : fset-max_property

[T:Type]. ∀[eq:EqDecider(T)]. ∀[f:T ⟶ ℕ]. ∀[s:fset(T)].
  ((∀[x:T]. (f x) ≤ fset-max(f;s) supposing x ∈ s)
  ∧ ((∀x:T. (x ∈  x < fset-max(f;s))) ∧ (s {} ∈ fset(T))))))


Proof




Definitions occuring in Statement :  empty-fset: {} fset-max: fset-max(f;s) fset-member: a ∈ s fset: fset(T) deq: EqDecider(T) nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q and: P ∧ Q cand: c∧ B uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q fset: fset(T) prop: quotient: x,y:A//B[x; y] fset-max: fset-max(f;s) fset-member: a ∈ s sq_type: SQType(T) guard: {T} true: True false: False le: A ≤ B not: ¬A so_lambda: λ2x.t[x] so_apply: x[s] nat: top: Top ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] uiff: uiff(P;Q) less_than': less_than'(a;b) iff: ⇐⇒ Q cons: [a b] rev_implies:  Q subtract: m fset-null: fset-null(s) less_than: a < b squash: T
Lemmas referenced :  decidable-equal-deq decidable__le fset-max_wf list_wf set-equal_wf set-equal-reflex equal-wf-base equal_wf subtype_base_sq int_subtype_base less_than'_wf fset-member_wf all_wf less_than_wf not_wf equal-wf-T-base fset_wf nat_wf deq_wf imax-list-lb cons_wf map_wf imax-list_wf length_of_cons_lemma non_neg_length map_length decidable__lt length_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf l_all_iff false_wf le_wf l_member_wf list-cases length_of_nil_lemma nil_member product_subtype_list length_wf_nat not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel assert-deq-member cons_member member_map imax-list-ub l_exists_iff set_subtype_base assert-fset-null list_subtype_fset assert_wf null_wf pos_length3 hd_wf hd_member nat_properties decidable__equal_int pos_length2 intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis dependent_functionElimination applyEquality functionExtensionality cumulativity because_Cache sqequalRule independent_isectElimination unionElimination promote_hyp lambdaFormation equalityTransitivity equalitySymmetry pointwiseFunctionality pertypeElimination productElimination productEquality intEquality natural_numberEquality instantiate voidElimination independent_pairEquality lambdaEquality axiomEquality isect_memberEquality independent_pairFormation functionEquality baseClosed universeEquality setElimination rename voidEquality addEquality dependent_pairFormation int_eqEquality computeAll dependent_set_memberEquality hypothesis_subsumption minusEquality setEquality inrFormation addLevel impliesFunctionality levelHypothesis impliesLevelFunctionality applyLambdaEquality imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[f:T  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[s:fset(T)].
    ((\mforall{}[x:T].  (f  x)  \mleq{}  fset-max(f;s)  supposing  x  \mmember{}  s)
    \mwedge{}  (\mneg{}((\mforall{}x:T.  (x  \mmember{}  s  {}\mRightarrow{}  f  x  <  fset-max(f;s)))  \mwedge{}  (\mneg{}(s  =  \{\})))))



Date html generated: 2017_04_17-AM-09_20_46
Last ObjectModification: 2017_02_27-PM-05_24_32

Theory : finite!sets


Home Index