Nuprl Lemma : f-subset-union

[A:Type]. ∀[eqa:EqDecider(A)]. ∀[x,y:fset(A)].  x ⊆ x ⋃ y


Proof




Definitions occuring in Statement :  fset-union: x ⋃ y f-subset: xs ⊆ ys fset: fset(T) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T f-subset: xs ⊆ ys all: x:A. B[x] uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q or: P ∨ Q prop:
Lemmas referenced :  member-fset-union fset-member_wf fset-member_witness fset-union_wf fset_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality hypothesis productElimination independent_functionElimination inlFormation sqequalRule lambdaEquality isect_memberEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[x,y:fset(A)].    x  \msubseteq{}  x  \mcup{}  y



Date html generated: 2016_05_14-PM-03_38_41
Last ObjectModification: 2015_12_26-PM-06_42_00

Theory : finite!sets


Home Index