Step
*
1
1
of Lemma
fset-induction
.....assertion..... 
1. [T] : Type
2. eq : EqDecider(T)
3. [P] : fset(T) ⟶ ℙ
4. ∀s:fset(T). SqStable(P[s])
5. P[{}]
6. ∀s:fset(T). ∀x:T.  (P[s] 
⇒ P[fset-add(eq;x;s)] supposing ¬x ∈ s)
⊢ ∀n:ℕ. ∀s:fset(T).  ((||s|| ≤ n) 
⇒ P[s])
BY
{ (InductionOnNat THEN Auto) }
1
1. [T] : Type
2. eq : EqDecider(T)
3. [P] : fset(T) ⟶ ℙ
4. ∀s:fset(T). SqStable(P[s])
5. P[{}]
6. ∀s:fset(T). ∀x:T.  (P[s] 
⇒ P[fset-add(eq;x;s)] supposing ¬x ∈ s)
7. s : fset(T)
8. ||s|| ≤ 0
⊢ P[s]
2
1. [T] : Type
2. eq : EqDecider(T)
3. [P] : fset(T) ⟶ ℙ
4. ∀s:fset(T). SqStable(P[s])
5. P[{}]
6. ∀s:fset(T). ∀x:T.  (P[s] 
⇒ P[fset-add(eq;x;s)] supposing ¬x ∈ s)
7. n : ℤ
8. [%4] : 0 < n
9. ∀s:fset(T). ((||s|| ≤ (n - 1)) 
⇒ P[s])
10. s : fset(T)
11. ||s|| ≤ n
⊢ P[s]
Latex:
Latex:
.....assertion..... 
1.  [T]  :  Type
2.  eq  :  EqDecider(T)
3.  [P]  :  fset(T)  {}\mrightarrow{}  \mBbbP{}
4.  \mforall{}s:fset(T).  SqStable(P[s])
5.  P[\{\}]
6.  \mforall{}s:fset(T).  \mforall{}x:T.    (P[s]  {}\mRightarrow{}  P[fset-add(eq;x;s)]  supposing  \mneg{}x  \mmember{}  s)
\mvdash{}  \mforall{}n:\mBbbN{}.  \mforall{}s:fset(T).    ((||s||  \mleq{}  n)  {}\mRightarrow{}  P[s])
By
Latex:
(InductionOnNat  THEN  Auto)
Home
Index