Step * 1 2 2 2 of Lemma Dickson's lemma


1. : ℕ
2. ∀p1:ℕp. ∀A:ℕp1 ⟶ ℕ ⟶ ℕ.  ∃j:ℕ. ∃i:ℕj. ∀k:ℕp1. (A[k;i] ≤ A[k;j])
3. : ℕp ⟶ ℕ ⟶ ℕ
4. ¬(p 0 ∈ ℤ)
5. ∀n,m:ℕ.  ∃i:ℕ(m < i ∧ ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (n ≤ A[0;i])))
6. ∀n:ℕ. ∃i:ℕ(n < i ∧ ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (A[0;n] ≤ A[0;i])))
⊢ ∃j:ℕ. ∃i:ℕj. ∀k:ℕp. (A[k;i] ≤ A[k;j])
BY
(Thin (-2) THEN (Skolemize (-1) `G' THENA Auto) THEN Thin (-3)) }

1
1. : ℕ
2. ∀p1:ℕp. ∀A:ℕp1 ⟶ ℕ ⟶ ℕ.  ∃j:ℕ. ∃i:ℕj. ∀k:ℕp1. (A[k;i] ≤ A[k;j])
3. : ℕp ⟶ ℕ ⟶ ℕ
4. ¬(p 0 ∈ ℤ)
5. n:ℕ ⟶ ℕ
6. ∀n:ℕ(n < n ∧ ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (A[0;n] ≤ A[0;G n])))
⊢ ∃j:ℕ. ∃i:ℕj. ∀k:ℕp. (A[k;i] ≤ A[k;j])


Latex:


Latex:

1.  p  :  \mBbbN{}
2.  \mforall{}p1:\mBbbN{}p.  \mforall{}A:\mBbbN{}p1  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    \mexists{}j:\mBbbN{}.  \mexists{}i:\mBbbN{}j.  \mforall{}k:\mBbbN{}p1.  (A[k;i]  \mleq{}  A[k;j])
3.  A  :  \mBbbN{}p  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}
4.  \mneg{}(p  =  0)
5.  \mforall{}n,m:\mBbbN{}.    \mexists{}i:\mBbbN{}.  (m  <  i  \mwedge{}  ((\mexists{}b:\mBbbN{}.  \mexists{}a:\mBbbN{}b.  \mforall{}k:\mBbbN{}p.  (A[k;a]  \mleq{}  A[k;b]))  \mvee{}  (n  \mleq{}  A[0;i])))
6.  \mforall{}n:\mBbbN{}.  \mexists{}i:\mBbbN{}.  (n  <  i  \mwedge{}  ((\mexists{}b:\mBbbN{}.  \mexists{}a:\mBbbN{}b.  \mforall{}k:\mBbbN{}p.  (A[k;a]  \mleq{}  A[k;b]))  \mvee{}  (A[0;n]  \mleq{}  A[0;i])))
\mvdash{}  \mexists{}j:\mBbbN{}.  \mexists{}i:\mBbbN{}j.  \mforall{}k:\mBbbN{}p.  (A[k;i]  \mleq{}  A[k;j])


By


Latex:
(Thin  (-2)  THEN  (Skolemize  (-1)  `G'  THENA  Auto)  THEN  Thin  (-3))




Home Index