Step
*
1
2
2
2
1
of Lemma
Dickson's lemma
1. p : ℕ
2. ∀p1:ℕp. ∀A:ℕp1 ⟶ ℕ ⟶ ℕ.  ∃j:ℕ. ∃i:ℕj. ∀k:ℕp1. (A[k;i] ≤ A[k;j])
3. A : ℕp ⟶ ℕ ⟶ ℕ
4. ¬(p = 0 ∈ ℤ)
5. G : n:ℕ ⟶ ℕ
6. ∀n:ℕ. (n < G n ∧ ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (A[0;n] ≤ A[0;G n])))
⊢ ∃j:ℕ. ∃i:ℕj. ∀k:ℕp. (A[k;i] ≤ A[k;j])
BY
{ Assert ⌜∃g:ℕ ⟶ ℕ
           ((∀b:ℕ. ∀a:ℕb.  g a < g b)
           ∧ (∀l:ℕ. ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (A[0;g l] ≤ A[0;g (l + 1)]))))⌝⋅ }
1
.....assertion..... 
1. p : ℕ
2. ∀p1:ℕp. ∀A:ℕp1 ⟶ ℕ ⟶ ℕ.  ∃j:ℕ. ∃i:ℕj. ∀k:ℕp1. (A[k;i] ≤ A[k;j])
3. A : ℕp ⟶ ℕ ⟶ ℕ
4. ¬(p = 0 ∈ ℤ)
5. G : n:ℕ ⟶ ℕ
6. ∀n:ℕ. (n < G n ∧ ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (A[0;n] ≤ A[0;G n])))
⊢ ∃g:ℕ ⟶ ℕ
   ((∀b:ℕ. ∀a:ℕb.  g a < g b) ∧ (∀l:ℕ. ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (A[0;g l] ≤ A[0;g (l + 1)]))))
2
1. p : ℕ
2. ∀p1:ℕp. ∀A:ℕp1 ⟶ ℕ ⟶ ℕ.  ∃j:ℕ. ∃i:ℕj. ∀k:ℕp1. (A[k;i] ≤ A[k;j])
3. A : ℕp ⟶ ℕ ⟶ ℕ
4. ¬(p = 0 ∈ ℤ)
5. G : n:ℕ ⟶ ℕ
6. ∀n:ℕ. (n < G n ∧ ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (A[0;n] ≤ A[0;G n])))
7. ∃g:ℕ ⟶ ℕ
    ((∀b:ℕ. ∀a:ℕb.  g a < g b) ∧ (∀l:ℕ. ((∃b:ℕ. ∃a:ℕb. ∀k:ℕp. (A[k;a] ≤ A[k;b])) ∨ (A[0;g l] ≤ A[0;g (l + 1)]))))
⊢ ∃j:ℕ. ∃i:ℕj. ∀k:ℕp. (A[k;i] ≤ A[k;j])
Latex:
Latex:
1.  p  :  \mBbbN{}
2.  \mforall{}p1:\mBbbN{}p.  \mforall{}A:\mBbbN{}p1  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    \mexists{}j:\mBbbN{}.  \mexists{}i:\mBbbN{}j.  \mforall{}k:\mBbbN{}p1.  (A[k;i]  \mleq{}  A[k;j])
3.  A  :  \mBbbN{}p  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}
4.  \mneg{}(p  =  0)
5.  G  :  n:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
6.  \mforall{}n:\mBbbN{}.  (n  <  G  n  \mwedge{}  ((\mexists{}b:\mBbbN{}.  \mexists{}a:\mBbbN{}b.  \mforall{}k:\mBbbN{}p.  (A[k;a]  \mleq{}  A[k;b]))  \mvee{}  (A[0;n]  \mleq{}  A[0;G  n])))
\mvdash{}  \mexists{}j:\mBbbN{}.  \mexists{}i:\mBbbN{}j.  \mforall{}k:\mBbbN{}p.  (A[k;i]  \mleq{}  A[k;j])
By
Latex:
Assert  \mkleeneopen{}\mexists{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}
                  ((\mforall{}b:\mBbbN{}.  \mforall{}a:\mBbbN{}b.    g  a  <  g  b)
                  \mwedge{}  (\mforall{}l:\mBbbN{}.  ((\mexists{}b:\mBbbN{}.  \mexists{}a:\mBbbN{}b.  \mforall{}k:\mBbbN{}p.  (A[k;a]  \mleq{}  A[k;b]))  \mvee{}  (A[0;g  l]  \mleq{}  A[0;g  (l  +  1)]))))\mkleeneclose{}\mcdot{}
Home
Index