Step
*
1
1
1
1
1
1
1
of Lemma
cWO-induction-extract-sqequal
1. f : Base
2. G : Base
3. G ~ λf,bar_recursion,n,s. case if (0) < (n)
then if s (n - 1) then inr (λp.let _,_ = p in Ax) else inl <Ax, Ax> fi
else (inr (λp.let _,_ = p
in Ax) )
of inl(r) =>
λa.let _,_ = r
in Ax
| inr(r) =>
λa.(f a (λs1.(bar_recursion (n + 1) (λm.if m=n then inl a else (s m)) s1)))
4. j : ℤ
5. t : Base
6. s1 : Base
7. n : ℕ+
8. x : Base
9. 0 < n
⊢ f s1 (λs1@0.(⊥ (n + 1) (λm.if m=n then inl s1 else if m=n - 1 then inl t else (x m)) s1@0)) ≤ f s1
fix((λF,t. (f t F)))
BY
{ (RW (SweepUpC UnrollRecursionC) 0 THEN Reduce 0 THEN RepeatFor 2 (SqLeCD) THEN Strictness THEN Auto) }
Latex:
Latex:
1. f : Base
2. G : Base
3. G \msim{} \mlambda{}f,bar$_{recursion}$,n,s. case if (0) < (n)
then if s (n - 1)
then inr (\mlambda{}p.let $_{}$,$_{\mbackslash{}\000Cff7d$ = p
in Ax)
else inl <Ax, Ax>
fi
else (inr (\mlambda{}p.let $_{}$,$_{}\000C$ = p
in Ax) )
of inl(r) =>
\mlambda{}a.let $_{}$,$_{}$ = r
in Ax
| inr(r) =>
\mlambda{}a.(f a
(\mlambda{}s1.(bar$_{recursion}$ (n + 1) (\mlambda{}m.if m=n then\000C inl a else (s m)) s1)))
4. j : \mBbbZ{}
5. t : Base
6. s1 : Base
7. n : \mBbbN{}\msupplus{}
8. x : Base
9. 0 < n
\mvdash{} f s1 (\mlambda{}s1@0.(\mbot{} (n + 1) (\mlambda{}m.if m=n then inl s1 else if m=n - 1 then inl t else (x m)) s1@0))
\mleq{} f s1 fix((\mlambda{}F,t. (f t F)))
By
Latex:
(RW (SweepUpC UnrollRecursionC) 0 THEN Reduce 0 THEN RepeatFor 2 (SqLeCD) THEN Strictness THEN Auto)
Home
Index