Step
*
1
1
1
1
1
2
2
1
of Lemma
cWO-induction-extract-sqequal
1. f : Base
2. G : Base
3. G ~ λf,bar_recursion,n,s. case if (0) < (n)
then if s (n - 1) then inr (λp.let _,_ = p in Ax) else inl <Ax, Ax> fi
else (inr (λp.let _,_ = p
in Ax) )
of inl(r) =>
λa.let _,_ = r
in Ax
| inr(r) =>
λa.(f a (λs1.(bar_recursion (n + 1) (λm.if m=n then inl a else (s m)) s1)))
4. j : ℤ
5. j ≠ 0
6. 0 < j
7. ∀t,s1:Base. ∀n:ℕ+. ∀x:Base.
(G f (G f^j - 1 ⊥) n (λm.if m=n - 1 then inl t else (x m)) s1 ≤ f s1 fix((λF,t. (f t F))))
8. t : Base
9. s1 : Base
10. n : ℕ+
11. x : Base
12. 0 < n
13. (λs1@0.(G f (G f^j - 1 ⊥) (n + 1) (λm.if m=n then inl s1 else if m=n - 1 then inl t else (x m)) s1@0))↓
⊢ λs1@0.(G f (G f^j - 1 ⊥) (n + 1) (λm.if m=n then inl s1 else if m=n - 1 then inl t else (x m)) s1@0)
≤ fix((λF,t. (f t F)))
BY
{ (RW (SweepUpC UnrollRecursionC) 0 THEN Reduce 0 THEN SqLeCD) }
1
1. f : Base
2. G : Base
3. G ~ λf,bar_recursion,n,s. case if (0) < (n)
then if s (n - 1) then inr (λp.let _,_ = p in Ax) else inl <Ax, Ax> fi
else (inr (λp.let _,_ = p
in Ax) )
of inl(r) =>
λa.let _,_ = r
in Ax
| inr(r) =>
λa.(f a (λs1.(bar_recursion (n + 1) (λm.if m=n then inl a else (s m)) s1)))
4. j : ℤ
5. j ≠ 0
6. 0 < j
7. ∀t,s1:Base. ∀n:ℕ+. ∀x:Base.
(G f (G f^j - 1 ⊥) n (λm.if m=n - 1 then inl t else (x m)) s1 ≤ f s1 fix((λF,t. (f t F))))
8. t : Base
9. s1 : Base
10. n : ℕ+
11. x : Base
12. 0 < n
13. (λs1@0.(G f (G f^j - 1 ⊥) (n + 1) (λm.if m=n then inl s1 else if m=n - 1 then inl t else (x m)) s1@0))↓
14. s1@0 : Base
⊢ G f (G f^j - 1 ⊥) (n + 1) (λm.if m=n then inl s1 else if m=n - 1 then inl t else (x m)) s1@0 ≤ f s1@0
fix((λF,t. (f t F))\000C)
Latex:
Latex:
1. f : Base
2. G : Base
3. G \msim{} \mlambda{}f,bar$_{recursion}$,n,s. case if (0) < (n)
then if s (n - 1)
then inr (\mlambda{}p.let $_{}$,$_{\mbackslash{}\000Cff7d$ = p
in Ax)
else inl <Ax, Ax>
fi
else (inr (\mlambda{}p.let $_{}$,$_{}\000C$ = p
in Ax) )
of inl(r) =>
\mlambda{}a.let $_{}$,$_{}$ = r
in Ax
| inr(r) =>
\mlambda{}a.(f a
(\mlambda{}s1.(bar$_{recursion}$ (n + 1) (\mlambda{}m.if m=n then\000C inl a else (s m)) s1)))
4. j : \mBbbZ{}
5. j \mneq{} 0
6. 0 < j
7. \mforall{}t,s1:Base. \mforall{}n:\mBbbN{}\msupplus{}. \mforall{}x:Base.
(G f (G f\^{}j - 1 \mbot{}) n (\mlambda{}m.if m=n - 1 then inl t else (x m)) s1 \mleq{} f s1 fix((\mlambda{}F,t. (f t F))))
8. t : Base
9. s1 : Base
10. n : \mBbbN{}\msupplus{}
11. x : Base
12. 0 < n
13. (\mlambda{}s1@0.(G f (G f\^{}j - 1 \mbot{}) (n + 1)
(\mlambda{}m.if m=n then inl s1 else if m=n - 1 then inl t else (x m))
s1@0))\mdownarrow{}
\mvdash{} \mlambda{}s1@0.(G f (G f\^{}j - 1 \mbot{}) (n + 1)
(\mlambda{}m.if m=n then inl s1 else if m=n - 1 then inl t else (x m))
s1@0) \mleq{} fix((\mlambda{}F,t. (f t F)))
By
Latex:
(RW (SweepUpC UnrollRecursionC) 0 THEN Reduce 0 THEN SqLeCD)
Home
Index