Nuprl Lemma : sqn+1type_product
∀[T,S:Type]. ∀[n:ℕ].  (sqntype(n + 1;T × S)) supposing (sqntype(n;S) and sqntype(n;T))
Proof
Definitions occuring in Statement : 
sqntype: sqntype(n;T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
product: x:A × B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
sqn+1type_dep_product, 
sqntype_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
hypothesis, 
lambdaFormation, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T,S:Type].  \mforall{}[n:\mBbbN{}].    (sqntype(n  +  1;T  \mtimes{}  S))  supposing  (sqntype(n;S)  and  sqntype(n;T))
Date html generated:
2019_06_20-AM-11_34_02
Last ObjectModification:
2018_08_17-PM-04_44_53
Theory : int_1
Home
Index