Nuprl Lemma : sqn+1type_product

[T,S:Type]. ∀[n:ℕ].  (sqntype(n 1;T × S)) supposing (sqntype(n;S) and sqntype(n;T))


Proof




Definitions occuring in Statement :  sqntype: sqntype(n;T) nat: uimplies: supposing a uall: [x:A]. B[x] product: x:A × B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] prop:
Lemmas referenced :  sqn+1type_dep_product sqntype_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality independent_isectElimination hypothesis lambdaFormation because_Cache universeEquality

Latex:
\mforall{}[T,S:Type].  \mforall{}[n:\mBbbN{}].    (sqntype(n  +  1;T  \mtimes{}  S))  supposing  (sqntype(n;S)  and  sqntype(n;T))



Date html generated: 2019_06_20-AM-11_34_02
Last ObjectModification: 2018_08_17-PM-04_44_53

Theory : int_1


Home Index