Nuprl Lemma : sqntype_wf

[T:Type]. ∀[n:ℕ].  (sqntype(n;T) ∈ ℙ)


Proof




Definitions occuring in Statement :  sqntype: sqntype(n;T) nat: uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sqntype: sqntype(n;T) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  all_wf base_wf equal-wf-base sqequal_n_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality functionEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].    (sqntype(n;T)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-AM-11_33_55
Last ObjectModification: 2018_08_17-PM-03_30_59

Theory : int_1


Home Index