Nuprl Lemma : sqntype_subtype_base
∀[A:Type]. ∀[n:ℕ].  sqntype(n;A) supposing A ⊆r Base
Proof
Definitions occuring in Statement : 
sqntype: sqntype(n;T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
sqntype_subtype, 
base_wf, 
sqntype_base, 
subtype_rel_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[n:\mBbbN{}].    sqntype(n;A)  supposing  A  \msubseteq{}r  Base
Date html generated:
2019_06_20-AM-11_34_09
Last ObjectModification:
2018_08_17-PM-03_55_26
Theory : int_1
Home
Index