Nuprl Lemma : sqntype_subtype_base

[A:Type]. ∀[n:ℕ].  sqntype(n;A) supposing A ⊆Base


Proof




Definitions occuring in Statement :  sqntype: sqntype(n;T) nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  sqntype_subtype base_wf sqntype_base subtype_rel_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalRule axiomEquality hypothesis thin rename extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality independent_isectElimination universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[n:\mBbbN{}].    sqntype(n;A)  supposing  A  \msubseteq{}r  Base



Date html generated: 2019_06_20-AM-11_34_09
Last ObjectModification: 2018_08_17-PM-03_55_26

Theory : int_1


Home Index